pycryptodome/lib/Crypto/Signature/PKCS1_PSS.py

329 lines
11 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
#
# Signature/PKCS1_PSS.py : PKCS#1 PPS
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
"""RSA digital signature protocol with appendix according to PKCS#1 PSS.
See RFC3447__ or the `original RSA Labs specification`__.
This scheme is more properly called ``RSASSA-PSS``.
For example, a sender may authenticate a message using SHA-1 and PSS like
this:
>>> from Crypto.Signature import PKCS1_PSS
>>> from Crypto.Hash import SHA
>>> from Crypto.PublicKey import RSA
>>> from Crypto import Random
>>>
>>> message = 'To be signed'
>>> key = RSA.importKey(open('privkey.der').read())
>>> h = SHA.new()
>>> h.update(message)
>>> signature = PKCS1_PSS.sign(h, key)
At the receiver side, verification can be done like using the public part of
the RSA key:
>>> key = RSA.importKey(open('pubkey.der').read())
>>> h = SHA.new()
>>> h.update(message)
>>> if PKCS1_PSS.verify(h, key, signature):
>>> print "The signature is authentic."
>>> else:
>>> print "The signature is not authentic."
:undocumented: __revision__, __package__
.. __: http://www.ietf.org/rfc/rfc3447.txt
.. __: http://www.rsa.com/rsalabs/node.asp?id=2125
"""
# Allow nested scopes in Python 2.1
# See http://oreilly.com/pub/a/python/2001/04/19/pythonnews.html
from __future__ import nested_scopes
__revision__ = "$Id$"
__all__ = [ 'sign', 'verify' ]
import Crypto.Util.number
from Crypto.Util.number import ceil_shift, ceil_div, long_to_bytes
from Crypto.Util.strxor import strxor
def sign(mhash, key, mgfunc=None, saltLen=None):
"""Produce the PKCS#1 PSS signature of a message.
This function is named ``RSASSA-PSS-SIGN``, and is specified in
section 8.1.1 of RFC3447.
:Parameters:
mhash : hash object
The hash that was carried out over the message. This is an object
belonging to the `Crypto.Hash` module.
key : RSA key object
The key to use to sign the message. This is a `Crypto.PublicKey.RSA`
object and must have its private half.
mgfunc : callable
A mask generation function that accepts two parameters: a string to
use as seed, and the lenth of the mask to generate, in bytes.
If not specified, the standard MGF1 is used.
saltLen : int
Length of the salt, in bytes. If not specified, it matches the output
size of `mhash`.
:Return: The PSS signature encoded as a string.
:Raise ValueError:
If the RSA key length is not sufficiently long to deal with the given
hash algorithm.
:Raise TypeError:
If the RSA key has no private half.
:attention: Modify the salt length and the mask generation function only
if you know what you are doing.
The receiver must use the same parameters too.
"""
# TODO: Verify the key is RSA
randfunc = key._randfunc
# Set defaults for salt length and mask generation function
if saltLen == None:
sLen = mhash.digest_size
else:
sLen = saltLen
if mgfunc:
mgf = mgfunc
else:
mgf = lambda x,y: MGF1(x,y,mhash)
modBits = Crypto.Util.number.size(key.n)
# See 8.1.1 in RFC3447
k = ceil_div(modBits,8) # Convert from bits to bytes
# Step 1
em = EMSA_PSS_ENCODE(mhash, modBits-1, randfunc, mgf, sLen)
# Step 2a (OS2IP) and 2b (RSASP1)
m = key.decrypt(em)
# Step 2c (I2OSP)
S = '\x00'*(k-len(m)) + m
return S
def verify(mhash, key, S, mgfunc=None, saltLen=None):
"""Verify that a certain PKCS#1 PSS signature is authentic.
This function checks if the party holding the private half of the given
RSA key has really signed the message.
This function is called ``RSASSA-PSS-VERIFY``, and is specified in section
8.1.2 of RFC3447.
:Parameters:
mhash : hash object
The hash that was carried out over the message. This is an object
belonging to the `Crypto.Hash` module.
key : RSA key object
The key to use to verify the message. This is a `Crypto.PublicKey.RSA`
object.
S : string
The signature that needs to be validated.
mgfunc : callable
A mask generation function that accepts two parameters: a string to
use as seed, and the lenth of the mask to generate, in bytes.
If not specified, the standard MGF1 is used. The sender must have
used the same function.
saltLen : int
Length of the salt, in bytes. If not specified, it matches the output
size of `mhash`.
:Return: True if verification is correct. False otherwise.
"""
# TODO: Verify the key is RSA
# Set defaults for salt length and mask generation function
if saltLen == None:
sLen = mhash.digest_size
else:
sLen = saltLen
if mgfunc:
mgf = mgfunc
else:
mgf = lambda x,y: MGF1(x,y,mhash)
modBits = Crypto.Util.number.size(key.n)
# See 8.1.2 in RFC3447
k = ceil_div(modBits,8) # Convert from bits to bytes
# Step 1
if len(S) != k:
return 0
# Step 2a (O2SIP), 2b (RSAVP1), and partially 2c (I2OSP)
# Note that signature must be smaller than the module
# but RSA.py won't complain about it.
# TODO: Fix RSA object; don't do it here.
em = key.encrypt(S, 0)[0]
# Step 2c
emLen = ceil_div(modBits-1,8)
em = '\x00'*(emLen-len(em)) + em
# Step 3
try:
result = EMSA_PSS_VERIFY(mhash, em, modBits-1, mgf, sLen)
except ValueError:
return 0
# Step 4
return result
def MGF1(mgfSeed, maskLen, hash):
"""Mask Generation Function, described in B.2.1"""
T = ""
for counter in xrange(ceil_div(maskLen, hash.digest_size)):
c = long_to_bytes(counter, 4)
T = T + hash.new(mgfSeed + c).digest()
assert(len(T)>=maskLen)
return T[:maskLen]
def EMSA_PSS_ENCODE(mhash, emBits, randFunc, mgf, sLen):
"""
Implement the ``EMSA-PSS-ENCODE`` function, as defined
in PKCS#1 v2.1 (RFC3447, 9.1.1).
The original ``EMSA-PSS-ENCODE`` actually accepts the message ``M`` as input,
and hash it internally. Here, we expect that the message has already
been hashed instead.
:Parameters:
mhash : hash object
The hash object that holds the digest of the message being signed.
emBits : int
Maximum length of the final encoding, in bits.
randFunc : callable
An RNG function that accepts as only parameter an int, and returns
a string of random bytes, to be used as salt.
mgf : callable
A mask generation function that accepts two parameters: a string to
use as seed, and the lenth of the mask to generate, in bytes.
sLen : int
Length of the salt, in bytes.
:Return: An ``emLen`` byte long string that encodes the hash
(with ``emLen = \ceil(emBits/8)``).
:Raise ValueError:
When digest or salt length are too big.
"""
emLen = ceil_div(emBits,8)
# Bitmask of digits that fill up
lmask = 0
for i in xrange(8*emLen-emBits):
lmask = lmask>>1 | 0x80
# Step 1 and 2 have been already done
# Step 3
if emLen < mhash.digest_size+sLen+2:
raise ValueError("Digest or salt length are too long for given key size.")
# Step 4
salt = ""
if randFunc and sLen>0:
salt = randFunc(sLen)
# Step 5 and 6
h = mhash.new('\x00'*8 + mhash.digest() + salt)
# Step 7 and 8
db = '\x00'*(emLen-sLen-mhash.digest_size-2) + '\x01' + salt
# Step 9
dbMask = mgf(h.digest(), emLen-mhash.digest_size-1)
# Step 10
maskedDB = strxor(db,dbMask)
# Step 11
maskedDB = chr(ord(maskedDB[0]) & ~lmask) + maskedDB[1:]
# Step 12
em = maskedDB + h.digest() + '\xBC'
return em
def EMSA_PSS_VERIFY(mhash, em, emBits, mgf, sLen):
"""
Implement the ``EMSA-PSS-VERIFY`` function, as defined
in PKCS#1 v2.1 (RFC3447, 9.1.2).
``EMSA-PSS-VERIFY`` actually accepts the message ``M`` as input,
and hash it internally. Here, we expect that the message has already
been hashed instead.
:Parameters:
mhash : hash object
The hash object that holds the digest of the message to be verified.
em : string
The signature to verify, therefore proving that the sender really signed
the message that was received.
emBits : int
Length of the final encoding (em), in bits.
mgf : callable
A mask generation function that accepts two parameters: a string to
use as seed, and the lenth of the mask to generate, in bytes.
sLen : int
Length of the salt, in bytes.
:Return: 0 if the encoding is consistent, 1 if it is inconsistent.
:Raise ValueError:
When digest or salt length are too big.
"""
emLen = ceil_div(emBits,8)
# Bitmask of digits that fill up
lmask = 0
for i in xrange(8*emLen-emBits):
lmask = lmask>>1 | 0x80
# Step 1 and 2 have been already done
# Step 3
if emLen < mhash.digest_size+sLen+2:
return 0
# Step 4
if em[-1:]!='\xBC':
return 0
# Step 5
maskedDB = em[:emLen-mhash.digest_size-1]
h = em[emLen-mhash.digest_size-1:-1]
# Step 6
if lmask & ord(em[0]):
return 0
# Step 7
dbMask = mgf(h, emLen-mhash.digest_size-1)
# Step 8
db = strxor(maskedDB, dbMask)
# Step 9
db = chr(ord(db[0]) & ~lmask) + db[1:]
# Step 10
if not db.startswith('\x00'*(emLen-mhash.digest_size-sLen-2) + '\x01'):
return 0
# Step 11
salt = ""
if sLen: salt = db[-sLen:]
# Step 12 and 13
hp = mhash.new('\x00'*8 + mhash.digest() + salt).digest()
# Step 14
if h!=hp:
return 0
return 1