pycryptodome/lib/Crypto/PublicKey/ECC.py

753 lines
25 KiB
Python
Raw Normal View History

2015-12-28 23:22:56 +01:00
# ===================================================================
#
# Copyright (c) 2015, Legrandin <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
2016-01-26 22:05:02 +01:00
import struct
import binascii
2015-12-28 23:22:56 +01:00
2016-01-27 08:44:43 +01:00
from Crypto.Util.py3compat import bord, tobytes, b, tostr, bchr
2016-01-17 23:04:11 +01:00
2015-12-28 23:22:56 +01:00
from Crypto.Math.Numbers import Integer
2016-01-02 15:33:28 -05:00
from Crypto.Random import get_random_bytes
2016-01-17 23:04:11 +01:00
from Crypto.Util.asn1 import (DerObjectId, DerOctetString, DerSequence,
DerBitString)
2016-01-26 22:05:02 +01:00
from Crypto.IO import PKCS8, PEM
2016-01-17 23:04:11 +01:00
from Crypto.PublicKey import (_expand_subject_public_key_info,
2016-01-27 08:44:43 +01:00
_create_subject_public_key_info,
2016-01-17 23:04:11 +01:00
_extract_subject_public_key_info)
2015-12-28 23:22:56 +01:00
class _Curve(object):
pass
_curve = _Curve()
_curve.p = Integer(0xffffffff00000001000000000000000000000000ffffffffffffffffffffffffL)
_curve.b = Integer(0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b)
_curve.order = Integer(0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551)
2015-12-28 23:22:56 +01:00
_curve.Gx = Integer(0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296)
_curve.Gy = Integer(0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5)
2016-01-13 22:55:24 +01:00
_curve.names = ("P-256", "prime256v1", "secp256r1")
2016-01-17 23:04:11 +01:00
_curve.oid = "1.2.840.10045.3.1.7"
2015-12-28 23:22:56 +01:00
# https://www.nsa.gov/ia/_files/nist-routines.pdf
# http://point-at-infinity.org/ecc/nisttv
# http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html
# https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
# https://eprint.iacr.org/2013/816.pdf
2016-01-02 15:33:28 -05:00
class EccPoint(object):
2015-12-28 23:22:56 +01:00
def __init__(self, x, y):
self._x = Integer(x)
self._y = Integer(y)
2016-01-11 23:12:20 +01:00
# Buffers
self._common = Integer(0)
self._tmp1 = Integer(0)
self._x3 = Integer(0)
self._y3 = Integer(0)
2016-01-11 08:08:08 +01:00
def set(self, point):
self._x = Integer(point._x)
self._y = Integer(point._y)
return self
2015-12-28 23:22:56 +01:00
def __eq__(self, point):
return self._x == point._x and self._y == point._y
def __neg__(self):
if self.is_point_at_infinity():
return self.point_at_infinity()
2016-01-02 15:33:28 -05:00
return EccPoint(self._x, _curve.p - self._y)
2015-12-28 23:22:56 +01:00
def copy(self):
2016-01-02 15:33:28 -05:00
return EccPoint(self._x, self._y)
2015-12-28 23:22:56 +01:00
def is_point_at_infinity(self):
return not (self._x or self._y)
2015-12-28 23:22:56 +01:00
@staticmethod
def point_at_infinity():
2016-01-02 15:33:28 -05:00
return EccPoint(0, 0)
2015-12-28 23:22:56 +01:00
@property
def x(self):
if self.is_point_at_infinity():
raise ValueError("Point at infinity")
return self._x
@property
def y(self):
if self.is_point_at_infinity():
raise ValueError("Point at infinity")
return self._y
def double(self):
"""Double this point"""
2015-12-28 23:22:56 +01:00
if not self._y:
2015-12-28 23:22:56 +01:00
return self.point_at_infinity()
common = self._common
tmp1 = self._tmp1
x3 = self._x3
y3 = self._y3
2016-01-08 23:27:35 +01:00
# common = (pow(self._x, 2, _curve.p) * 3 - 3) * (self._y << 1).inverse(_curve.p) % _curve.p
common.set(self._x)
common.inplace_pow(2, _curve.p)
2016-01-01 09:28:00 -05:00
common *= 3
common -= 3
tmp1.set(self._y)
tmp1 <<= 1
2016-01-11 22:55:39 +01:00
tmp1.inplace_inverse(_curve.p)
common *= tmp1
2016-01-01 09:28:00 -05:00
common %= _curve.p
2016-01-11 23:12:20 +01:00
2016-01-08 23:27:35 +01:00
# x3 = (pow(common, 2, _curve.p) - 2 * self._x) % _curve.p
x3.set(common)
x3.inplace_pow(2, _curve.p)
2016-01-01 09:28:00 -05:00
x3 -= self._x
x3 -= self._x
while x3.is_negative():
2015-12-28 23:22:56 +01:00
x3 += _curve.p
2016-01-11 23:12:20 +01:00
2016-01-01 09:28:00 -05:00
# y3 = ((self._x - x3) * common - self._y) % _curve.p
y3.set(self._x)
y3 -= x3
2016-01-01 09:28:00 -05:00
y3 *= common
y3 -= self._y
y3 %= _curve.p
2015-12-28 23:22:56 +01:00
self._x.set(x3)
self._y.set(y3)
return self
2015-12-28 23:22:56 +01:00
2016-01-11 08:08:08 +01:00
def __iadd__(self, point):
"""Add a second point to this one"""
2015-12-28 23:22:56 +01:00
if self.is_point_at_infinity():
2016-01-11 08:08:08 +01:00
return self.set(point)
2015-12-28 23:22:56 +01:00
if point.is_point_at_infinity():
2016-01-11 08:08:08 +01:00
return self
2015-12-28 23:22:56 +01:00
if self == point:
return self.double()
2015-12-28 23:22:56 +01:00
if self._x == point._x:
2016-01-11 08:08:08 +01:00
return self.set(self.point_at_infinity())
2015-12-28 23:22:56 +01:00
common = self._common
tmp1 = self._tmp1
x3 = self._x3
y3 = self._y3
2016-01-01 09:28:00 -05:00
# common = (point._y - self._y) * (point._x - self._x).inverse(_curve.p) % _curve.p
common.set(point._y)
common -= self._y
tmp1.set(point._x)
tmp1 -= self._x
2016-01-11 22:55:39 +01:00
tmp1.inplace_inverse(_curve.p)
common *= tmp1
2016-01-01 09:28:00 -05:00
common %= _curve.p
2016-01-08 23:27:35 +01:00
# x3 = (pow(common, 2, _curve.p) - self._x - point._x) % _curve.p
2016-01-11 23:12:20 +01:00
x3.set(common)
x3.inplace_pow(2, _curve.p)
x3 -= self._x
x3 -= point._x
while x3.is_negative():
x3 += _curve.p
2016-01-01 09:28:00 -05:00
# y3 = ((self._x - x3) * common - self._y) % _curve.p
y3.set(self._x)
y3 -= x3
2016-01-01 09:28:00 -05:00
y3 *= common
y3 -= self._y
y3 %= _curve.p
2015-12-28 23:22:56 +01:00
self._x.set(x3)
self._y.set(y3)
return self
2016-01-11 08:08:08 +01:00
def __add__(self, point):
"""Return a new point, the addition of this one and another"""
result = self.copy()
result += point
return result
2015-12-28 23:22:56 +01:00
def __mul__(self, scalar):
2015-12-28 23:22:56 +01:00
"""Return a new point, the scalar product of this one"""
if scalar < 0:
raise ValueError("Scalar multiplication only defined for non-negative integers")
2015-12-28 23:22:56 +01:00
# Trivial results
if scalar == 0 or self.is_point_at_infinity():
return self.point_at_infinity()
elif scalar == 1:
return self.copy()
# Scalar randomization
2016-01-16 22:59:08 +01:00
scalar_blind = Integer.random(exact_bits=64) * _curve.order + scalar
# Montgomery key ladder
r = [self.point_at_infinity().copy(), self.copy()]
bit_size = int(scalar_blind.size_in_bits())
scalar_int = int(scalar_blind)
for i in range(bit_size, -1, -1):
di = scalar_int >> i & 1
r[di ^ 1] += r[di]
r[di].double()
return r[0]
2016-01-02 15:33:28 -05:00
2016-01-09 14:48:37 +01:00
_curve.G = EccPoint(_curve.Gx, _curve.Gy)
2016-01-02 15:33:28 -05:00
class EccKey(object):
def __init__(self, **kwargs):
"""Create a new ECC key
Do not instantiate this object directly.
Keywords:
curve : string
2016-01-13 22:55:24 +01:00
It must be "P-256", "prime256v1" or "secp256r1".
2016-01-02 15:33:28 -05:00
d : integer
Only for a private key. It must be in the range [1..order-1].
point : EccPoint
Mandatory for a public key. If provided for a private key,
the implementation will NOT check whether it matches ``d``.
"""
2016-01-09 22:18:11 +01:00
kwargs_ = dict(kwargs)
self.curve = kwargs_.pop("curve", None)
self._d = kwargs_.pop("d", None)
self._point = kwargs_.pop("point", None)
if kwargs_:
raise TypeError("Unknown parameters: " + str(kwargs_))
2016-01-02 15:33:28 -05:00
2016-01-13 22:55:24 +01:00
if self.curve not in _curve.names:
2016-01-02 15:33:28 -05:00
raise ValueError("Unsupported curve (%s)", self.curve)
if self._d is None:
if self._point is None:
raise ValueError("Either private or public ECC component must be specified")
else:
2016-01-09 22:41:29 +01:00
self._d = Integer(self._d)
2016-01-02 15:33:28 -05:00
if not 1 <= self._d < _curve.order:
raise ValueError("Invalid ECC private component")
2016-01-18 21:03:17 +01:00
def __eq__(self, other):
if other.has_private() != self.has_private():
return False
return (other.pointQ.x == self.pointQ.x) and (other.pointQ.y == self.pointQ.y)
2016-01-18 21:09:30 +01:00
def __repr__(self):
if self.has_private():
extra = ", d=%d" % int(self._d)
else:
extra = ""
return "EccKey(curve='P-256', x=%d, y=%d%s)" %\
(self.pointQ.x, self.pointQ.y, extra)
2016-01-02 15:33:28 -05:00
def has_private(self):
return self._d is not None
2016-01-09 14:48:37 +01:00
def _sign(self, z, k):
assert 0 < k < _curve.order
blind = Integer.random_range(min_inclusive=1,
max_exclusive=_curve.order)
blind_d = self._d * blind
inv_blind_k = (blind * k).inverse(_curve.order)
r = (_curve.G * k).x % _curve.order
s = inv_blind_k * (blind * z + blind_d * r) % _curve.order
2016-01-09 14:48:37 +01:00
return (r, s)
def _verify(self, z, rs):
sinv = rs[1].inverse(_curve.order)
point1 = _curve.G * ((sinv * z) % _curve.order)
2016-01-17 23:04:11 +01:00
point2 = self.pointQ * ((sinv * rs[0]) % _curve.order)
return (point1 + point2).x == rs[0]
2016-01-09 14:48:37 +01:00
2016-01-02 15:33:28 -05:00
@property
def d(self):
if not self.has_private():
raise ValueError("This is not a private ECC key")
return self._d
@property
def pointQ(self):
if self._point is None:
self._point = _curve.G * self._d
2016-01-02 15:33:28 -05:00
return self._point
2016-01-09 14:24:32 +01:00
def public_key(self):
return EccKey(curve="P-256", point=self.pointQ)
2016-01-27 08:44:43 +01:00
def _export_subjectPublicKeyInfo(self):
# Uncompressed form
order_bytes = _curve.order.size_in_bytes()
public_key = (bchr(4) +
self.pointQ.x.to_bytes(order_bytes) +
self.pointQ.y.to_bytes(order_bytes))
unrestricted_oid = "1.2.840.10045.2.1"
return _create_subject_public_key_info(unrestricted_oid,
public_key,
DerObjectId(_curve.oid))
def _export_private_der(self, include_ec_params=True):
assert self.has_private()
# ECPrivateKey ::= SEQUENCE {
# version INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1),
# privateKey OCTET STRING,
# parameters [0] ECParameters {{ NamedCurve }} OPTIONAL,
# publicKey [1] BIT STRING OPTIONAL
# }
# Public key - uncompressed form
order_bytes = _curve.order.size_in_bytes()
public_key = (bchr(4) +
self.pointQ.x.to_bytes(order_bytes) +
self.pointQ.y.to_bytes(order_bytes))
seq = [1,
DerOctetString(self.d.to_bytes(order_bytes)),
DerObjectId(_curve.oid, explicit=0),
DerBitString(public_key, explicit=1)]
if not include_ec_params:
del seq[2]
return DerSequence(seq).encode()
def _export_pkcs8(self, **kwargs):
if kwargs.get('passphrase', None) is not None and 'protection' not in kwargs:
raise ValueError("At least the 'protection' parameter should be present")
unrestricted_oid = "1.2.840.10045.2.1"
private_key = self._export_private_der(include_ec_params=False)
result = PKCS8.wrap(private_key,
unrestricted_oid,
key_params=DerObjectId(_curve.oid),
**kwargs)
return result
def _export_public_pem(self):
encoded_der = self._export_subjectPublicKeyInfo()
return PEM.encode(encoded_der, "PUBLIC KEY")
def _export_private_pem(self, passphrase, **kwargs):
2016-01-27 08:44:43 +01:00
encoded_der = self._export_private_der()
return PEM.encode(encoded_der, "EC PRIVATE KEY", passphrase, **kwargs)
2016-01-27 08:44:43 +01:00
def _export_private_clear_pkcs8_in_clear_pem(self):
encoded_der = self._export_pkcs8()
return PEM.encode(encoded_der, "PRIVATE KEY")
def _export_private_encrypted_pkcs8_in_clear_pem(self, passphrase, **kwargs):
assert passphrase
if 'protection' not in kwargs:
raise ValueError("At least the 'protection' parameter should be present")
encoded_der = self._export_pkcs8(passphrase=passphrase, **kwargs)
return PEM.encode(encoded_der, "ENCRYPTED PRIVATE KEY")
def export_key(self, **kwargs):
"""Export this ECC key.
:Keywords:
format : string
The format to use for wrapping the key:
- *'DER'*. The key will be encoded in an ASN.1 `DER`_ stucture (binary).
- *'PEM'*. The key will be encoded in a `PEM`_ envelope (ASCII).
passphrase : byte string or string
The passphrase to use for protecting the private key.
*If not provided, the private key will remain in clear form!*
use_pkcs8 : boolean
In case of a private key, whether the `PKCS#8`_ representation
should be (internally) used. By default it will.
Not using PKCS#8 when exporting a private key in
password-protected PEM form means that the much weaker and
unflexible `PEM encryption`_ mechanism will be used.
Using PKCS#8 is therefore always recommended.
protection : string
In case of a private key being exported with password-protection
and PKCS#8 (both ``DER`` and ``PEM``), this parameter MUST be
present and be a valid algorithm supported by `Crypto.IO.PKCS8`.
It is recommended to use ``PBKDF2WithHMAC-SHA1AndAES128-CBC``.
In case of a private key being exported with password-protection
and PKCS#8 (both ``DER`` and ``PEM``), all additional parameters
will be passed to `Crypto.IO.PKCS8`.
.. _DER: http://www.ietf.org/rfc/rfc5915.txt
.. _PEM: http://www.ietf.org/rfc/rfc1421.txt
.. _`PEM encryption`: http://www.ietf.org/rfc/rfc1423.txt
.. _PKCS#8: http://www.ietf.org/rfc/rfc5208.txt
:Return: A string (for PEM) or a byte string (for DER) with the encoded key.
"""
args = kwargs.copy()
ext_format = args.pop("format")
if ext_format not in ("PEM", "DER"):
raise ValueError("Unknown format '%s'" % ext_format)
if self.has_private():
passphrase = args.pop("passphrase", None)
if isinstance(passphrase, basestring):
passphrase = tobytes(passphrase)
use_pkcs8 = args.pop("use_pkcs8", True)
if ext_format == "PEM":
if use_pkcs8:
if passphrase:
return self._export_private_encrypted_pkcs8_in_clear_pem(passphrase, **args)
else:
return self._export_private_clear_pkcs8_in_clear_pem()
else:
return self._export_private_pem(passphrase, **args)
2016-01-27 08:44:43 +01:00
else:
# DER
if passphrase and not use_pkcs8:
raise ValueError("Private keys can only be encrpyted with DER using PKCS#8")
if use_pkcs8:
return self._export_pkcs8(passphrase=passphrase, **args)
else:
return self._export_private_der()
else: # Public key
if ext_format == "PEM":
return self._export_public_pem()
else:
return self._export_subjectPublicKeyInfo()
2016-01-02 15:33:28 -05:00
2016-01-09 14:48:37 +01:00
def generate(**kwargs):
2016-01-08 23:27:35 +01:00
"""Generate a new private key on the given curve.
2016-01-09 14:48:37 +01:00
:Keywords:
2016-01-08 23:27:35 +01:00
curve : string
2016-01-13 22:55:24 +01:00
It must be "P-256", "prime256v1" or "secp256r1".
2016-01-08 23:27:35 +01:00
randfunc : callable
The RNG to read randomness from.
If ``None``, the system source is used.
"""
2016-01-02 15:33:28 -05:00
2016-01-09 14:48:37 +01:00
curve = kwargs.pop("curve")
randfunc = kwargs.pop("randfunc", get_random_bytes)
if kwargs:
raise TypeError("Unknown parameters: " + str(kwargs))
2016-01-02 15:33:28 -05:00
d = Integer.random_range(min_inclusive=1,
max_exclusive=_curve.order,
randfunc=randfunc)
return EccKey(curve=curve, d=d)
2016-01-08 23:27:35 +01:00
2016-01-17 23:04:11 +01:00
2016-01-09 22:18:11 +01:00
def construct(**kwargs):
"""Build a new ECC key (private or public) starting
from some base components.
:Keywords:
curve : string
2016-01-13 22:55:24 +01:00
It must be present and set to "P-256", "prime256v1" or "secp256r1".
2016-01-09 22:18:11 +01:00
d : integer
Only for a private key. It must be in the range [1..order-1].
point_x : integer
X coordinate (affine) of the ECC point.
This value is mandatory in case of a public key.
point_y : integer
Y coordinate (affine) of the ECC point.
This value is mandatory in case of a public key.
"""
point_x = kwargs.pop("point_x", None)
point_y = kwargs.pop("point_y", None)
if "point" in kwargs:
raise TypeError("Unknown keyword: point")
2016-01-09 22:18:11 +01:00
if None not in (point_x, point_y):
kwargs["point"] = EccPoint(point_x, point_y)
# Validate that the point is on the P-256 curve
eq1 = pow(Integer(point_y), 2, _curve.p)
x = Integer(point_x)
eq2 = pow(x, 3, _curve.p)
x *= -3
eq2 += x
eq2 += _curve.b
eq2 %= _curve.p
if eq1 != eq2:
raise ValueError("The point is not on the curve")
# Validate that the private key matches the public one
d = kwargs.get("d", None)
if d is not None and "point" in kwargs:
pub_key = _curve.G * d
if pub_key.x != point_x or pub_key.y != point_y:
raise ValueError("Private and public ECC keys do not match")
2016-01-09 22:18:11 +01:00
return EccKey(**kwargs)
2016-01-08 23:27:35 +01:00
2016-01-17 23:04:11 +01:00
def _import_public_der(curve_name, publickey):
# We only support P-256 named curves for now
if curve_name != _curve.oid:
raise ValueError("Unsupport curve")
# ECPoint ::= OCTET STRING
# We support only uncompressed points
order_bytes = _curve.order.size_in_bytes()
if len(publickey) != (1 + 2 * order_bytes) or bord(publickey[0]) != 4:
raise ValueError("Only uncompressed points are supported")
point_x = Integer.from_bytes(publickey[1:order_bytes+1])
point_y = Integer.from_bytes(publickey[order_bytes+1:])
return construct(curve="P-256", point_x=point_x, point_y=point_y)
def _import_subjectPublicKeyInfo(encoded, *kwargs):
oid, encoded_key, params = _expand_subject_public_key_info(encoded)
# We accept id-ecPublicKey, id-ecDH, id-ecMQV without making any
# distiction for now.
unrestricted_oid = "1.2.840.10045.2.1"
ecdh_oid = "1.3.132.1.12"
ecmqv_oid = "1.3.132.1.13"
if oid not in (unrestricted_oid, ecdh_oid, ecmqv_oid) or not params:
raise ValueError("Invalid ECC OID")
# ECParameters ::= CHOICE {
# namedCurve OBJECT IDENTIFIER
# -- implicitCurve NULL
# -- specifiedCurve SpecifiedECDomain
# }
curve_name = DerObjectId().decode(params).value
return _import_public_der(curve_name, encoded_key)
def _import_private_der(encoded, passphrase, curve_name=None):
# ECPrivateKey ::= SEQUENCE {
# version INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1),
# privateKey OCTET STRING,
# parameters [0] ECParameters {{ NamedCurve }} OPTIONAL,
# publicKey [1] BIT STRING OPTIONAL
# }
private_key = DerSequence().decode(encoded, nr_elements=(3, 4))
if private_key[0] != 1:
raise ValueError("Incorrect ECC private key version")
scalar_bytes = DerOctetString().decode(private_key[1]).payload
order_bytes = _curve.order.size_in_bytes()
if len(scalar_bytes) != order_bytes:
raise ValueError("Private key is too small")
d = Integer.from_bytes(scalar_bytes)
try:
curve_name = DerObjectId(explicit=0).decode(private_key[2]).value
except ValueError:
pass
if curve_name != _curve.oid:
raise ValueError("Unsupport curve")
# Decode public key (if any, it must be P-256)
if len(private_key) == 4:
public_key_enc = DerBitString(explicit=1).decode(private_key[3]).value
public_key = _import_public_der(curve_name, public_key_enc)
point_x = public_key.pointQ.x
point_y = public_key.pointQ.y
else:
point_x = point_y = None
return construct(curve="P-256", d=d, point_x=point_x, point_y=point_y)
def _import_pkcs8(encoded, passphrase):
# From RFC5915, Section 1:
#
# Distributing an EC private key with PKCS#8 [RFC5208] involves including:
# a) id-ecPublicKey, id-ecDH, or id-ecMQV (from [RFC5480]) with the
# namedCurve as the parameters in the privateKeyAlgorithm field; and
# b) ECPrivateKey in the PrivateKey field, which is an OCTET STRING.
algo_oid, private_key, params = PKCS8.unwrap(encoded, passphrase)
# We accept id-ecPublicKey, id-ecDH, id-ecMQV without making any
# distiction for now.
unrestricted_oid = "1.2.840.10045.2.1"
ecdh_oid = "1.3.132.1.12"
ecmqv_oid = "1.3.132.1.13"
if algo_oid not in (unrestricted_oid, ecdh_oid, ecmqv_oid):
raise ValueError("No PKCS#8 encoded ECC key")
curve_name = DerObjectId().decode(params).value
return _import_private_der(private_key, passphrase, curve_name)
def _import_x509_cert(encoded, *kwargs):
sp_info = _extract_subject_public_key_info(encoded)
return _import_subjectPublicKeyInfo(sp_info)
2016-01-17 23:04:11 +01:00
def _import_der(encoded, passphrase):
decodings = (
_import_subjectPublicKeyInfo,
_import_x509_cert,
2016-01-17 23:04:11 +01:00
_import_private_der,
_import_pkcs8,
)
for decoding in decodings:
try:
return decoding(encoded, passphrase)
except (ValueError, TypeError, IndexError):
pass
raise ValueError("Not an ECC DER key")
2016-01-26 22:05:02 +01:00
def _import_openssh(encoded):
keystring = binascii.a2b_base64(encoded.split(b(' '))[1])
keyparts = []
while len(keystring) > 4:
l = struct.unpack(">I", keystring[:4])[0]
keyparts.append(keystring[4:4 + l])
keystring = keystring[4 + l:]
if keyparts[1] != b("nistp256"):
raise ValueError("Unsupported ECC curve")
return _import_public_der(_curve.oid, keyparts[2])
def import_key(encoded, passphrase=None):
2016-01-27 08:00:28 +01:00
"""Import an ECC key (public or private).
:Parameters:
encoded : byte string
The ECC key to import.
An ECC public key can be in any of the following formats:
- A X.509 certificate (binary or PEM format)
- A X.509 ``subjectPublicKeyInfo`` (binary or PEM format)
- An OpenSSH line (e.g. the content of ~/.ssh/id_ecdsa)
An ECC private key can be in any of the following formats:
- An ``ECPrivateKey`` (binary or PEM format), as defined
in section 3 of `RFC5915`_.
- A ``PrivateKeyInfo`` or ``EncryptedPrivateKeyInfo`` (binary or PEM
format) as defined in `PKCS#8`_.
For details about the PEM encoding, see `RFC1421`_/`RFC1423`_.
:Keywords:
passphrase : byte string
The passphrase to use to decrypt a private key. The key may be
protected either at the PEM level or at the PKCS#8 level.
This parameter is ignored if the key is not encrypted.
:Return: An ECC key object (`EccKey`)
:Raise ValueError:
When the given key cannot be parsed (possibly because
the pass phrase is wrong).
.. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt
.. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt
.. _RFC5915: http://www.ietf.org/rfc/rfc5915.txt
.. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt
"""
2016-01-26 22:05:02 +01:00
encoded = tobytes(encoded)
if passphrase is not None:
passphrase = tobytes(passphrase)
# PEM
if encoded.startswith(b('-----')):
der_encoded, marker, enc_flag = PEM.decode(tostr(encoded), passphrase)
if enc_flag:
passphrase = None
return _import_der(der_encoded, passphrase)
# OpenSSH
if encoded.startswith(b('ecdsa-sha2-')):
return _import_openssh(encoded)
# DER
if bord(encoded[0]) == 0x30:
return _import_der(encoded, passphrase)
raise ValueError("ECC key format is not supported")
2016-01-08 23:27:35 +01:00
if __name__ == "__main__":
import time
d = 0xc51e4753afdec1e6b6c6a5b992f43f8dd0c7a8933072708b6522468b2ffb06fd
2016-01-10 13:53:51 +01:00
point = generate(curve="P-256").pointQ
2016-01-08 23:27:35 +01:00
start = time.time()
count = 30
for x in xrange(count):
_ = point * d
2016-01-08 23:27:35 +01:00
print (time.time() - start) / count * 1000, "ms"