mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 05:31:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			589 lines
		
	
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			589 lines
		
	
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /**************************************************************************/
 | |
| /*  godot_collision_solver_3d.cpp                                         */
 | |
| /**************************************************************************/
 | |
| /*                         This file is part of:                          */
 | |
| /*                             GODOT ENGINE                               */
 | |
| /*                        https://godotengine.org                         */
 | |
| /**************************************************************************/
 | |
| /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
 | |
| /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
 | |
| /*                                                                        */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining  */
 | |
| /* a copy of this software and associated documentation files (the        */
 | |
| /* "Software"), to deal in the Software without restriction, including    */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,    */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to     */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to  */
 | |
| /* the following conditions:                                              */
 | |
| /*                                                                        */
 | |
| /* The above copyright notice and this permission notice shall be         */
 | |
| /* included in all copies or substantial portions of the Software.        */
 | |
| /*                                                                        */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
 | |
| /**************************************************************************/
 | |
| 
 | |
| #include "godot_collision_solver_3d.h"
 | |
| 
 | |
| #include "godot_collision_solver_3d_sat.h"
 | |
| #include "godot_soft_body_3d.h"
 | |
| 
 | |
| #include "gjk_epa.h"
 | |
| 
 | |
| #define collision_solver sat_calculate_penetration
 | |
| //#define collision_solver gjk_epa_calculate_penetration
 | |
| 
 | |
| bool GodotCollisionSolver3D::solve_static_world_boundary(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin) {
 | |
| 	const GodotWorldBoundaryShape3D *world_boundary = static_cast<const GodotWorldBoundaryShape3D *>(p_shape_A);
 | |
| 	if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
 | |
| 		return false;
 | |
| 	}
 | |
| 	Plane p = p_transform_A.xform(world_boundary->get_plane());
 | |
| 
 | |
| 	static const int max_supports = 16;
 | |
| 	Vector3 supports[max_supports];
 | |
| 	int support_count;
 | |
| 	GodotShape3D::FeatureType support_type = GodotShape3D::FeatureType::FEATURE_POINT;
 | |
| 	p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(), max_supports, supports, support_count, support_type);
 | |
| 
 | |
| 	if (support_type == GodotShape3D::FEATURE_CIRCLE) {
 | |
| 		ERR_FAIL_COND_V(support_count != 3, false);
 | |
| 
 | |
| 		Vector3 circle_pos = supports[0];
 | |
| 		Vector3 circle_axis_1 = supports[1] - circle_pos;
 | |
| 		Vector3 circle_axis_2 = supports[2] - circle_pos;
 | |
| 
 | |
| 		// Use 3 equidistant points on the circle.
 | |
| 		for (int i = 0; i < 3; ++i) {
 | |
| 			Vector3 vertex_pos = circle_pos;
 | |
| 			vertex_pos += circle_axis_1 * Math::cos(2.0 * Math_PI * i / 3.0);
 | |
| 			vertex_pos += circle_axis_2 * Math::sin(2.0 * Math_PI * i / 3.0);
 | |
| 			supports[i] = vertex_pos;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bool found = false;
 | |
| 
 | |
| 	for (int i = 0; i < support_count; i++) {
 | |
| 		supports[i] += p_margin * supports[i].normalized();
 | |
| 		supports[i] = p_transform_B.xform(supports[i]);
 | |
| 		if (p.distance_to(supports[i]) >= 0) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		found = true;
 | |
| 
 | |
| 		Vector3 support_A = p.project(supports[i]);
 | |
| 
 | |
| 		if (p_result_callback) {
 | |
| 			if (p_swap_result) {
 | |
| 				Vector3 normal = (support_A - supports[i]).normalized();
 | |
| 				p_result_callback(supports[i], 0, support_A, 0, normal, p_userdata);
 | |
| 			} else {
 | |
| 				Vector3 normal = (supports[i] - support_A).normalized();
 | |
| 				p_result_callback(support_A, 0, supports[i], 0, normal, p_userdata);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| bool GodotCollisionSolver3D::solve_separation_ray(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin) {
 | |
| 	const GodotSeparationRayShape3D *ray = static_cast<const GodotSeparationRayShape3D *>(p_shape_A);
 | |
| 
 | |
| 	Vector3 from = p_transform_A.origin;
 | |
| 	Vector3 to = from + p_transform_A.basis.get_column(2) * (ray->get_length() + p_margin);
 | |
| 	Vector3 support_A = to;
 | |
| 
 | |
| 	Transform3D ai = p_transform_B.affine_inverse();
 | |
| 
 | |
| 	from = ai.xform(from);
 | |
| 	to = ai.xform(to);
 | |
| 
 | |
| 	Vector3 p, n;
 | |
| 	int fi = -1;
 | |
| 	if (!p_shape_B->intersect_segment(from, to, p, n, fi, true)) {
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	// Discard contacts when the ray is fully contained inside the shape.
 | |
| 	if (n == Vector3()) {
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	// Discard contacts in the wrong direction.
 | |
| 	if (n.dot(from - to) < CMP_EPSILON) {
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	Vector3 support_B = p_transform_B.xform(p);
 | |
| 	if (ray->get_slide_on_slope()) {
 | |
| 		Vector3 global_n = ai.basis.xform_inv(n).normalized();
 | |
| 		support_B = support_A + (support_B - support_A).length() * global_n;
 | |
| 	}
 | |
| 
 | |
| 	if (p_result_callback) {
 | |
| 		Vector3 normal = (support_B - support_A).normalized();
 | |
| 		if (p_swap_result) {
 | |
| 			p_result_callback(support_B, 0, support_A, 0, -normal, p_userdata);
 | |
| 		} else {
 | |
| 			p_result_callback(support_A, 0, support_B, 0, normal, p_userdata);
 | |
| 		}
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| struct _SoftBodyContactCollisionInfo {
 | |
| 	int node_index = 0;
 | |
| 	GodotCollisionSolver3D::CallbackResult result_callback = nullptr;
 | |
| 	void *userdata = nullptr;
 | |
| 	bool swap_result = false;
 | |
| 	int contact_count = 0;
 | |
| };
 | |
| 
 | |
| void GodotCollisionSolver3D::soft_body_contact_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal, void *p_userdata) {
 | |
| 	_SoftBodyContactCollisionInfo &cinfo = *(static_cast<_SoftBodyContactCollisionInfo *>(p_userdata));
 | |
| 
 | |
| 	++cinfo.contact_count;
 | |
| 
 | |
| 	if (!cinfo.result_callback) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (cinfo.swap_result) {
 | |
| 		cinfo.result_callback(p_point_B, cinfo.node_index, p_point_A, p_index_A, -normal, cinfo.userdata);
 | |
| 	} else {
 | |
| 		cinfo.result_callback(p_point_A, p_index_A, p_point_B, cinfo.node_index, normal, cinfo.userdata);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct _SoftBodyQueryInfo {
 | |
| 	GodotSoftBody3D *soft_body = nullptr;
 | |
| 	const GodotShape3D *shape_A = nullptr;
 | |
| 	const GodotShape3D *shape_B = nullptr;
 | |
| 	Transform3D transform_A;
 | |
| 	Transform3D node_transform;
 | |
| 	_SoftBodyContactCollisionInfo contact_info;
 | |
| #ifdef DEBUG_ENABLED
 | |
| 	int node_query_count = 0;
 | |
| 	int convex_query_count = 0;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| bool GodotCollisionSolver3D::soft_body_query_callback(uint32_t p_node_index, void *p_userdata) {
 | |
| 	_SoftBodyQueryInfo &query_cinfo = *(static_cast<_SoftBodyQueryInfo *>(p_userdata));
 | |
| 
 | |
| 	Vector3 node_position = query_cinfo.soft_body->get_node_position(p_node_index);
 | |
| 
 | |
| 	Transform3D transform_B;
 | |
| 	transform_B.origin = query_cinfo.node_transform.xform(node_position);
 | |
| 
 | |
| 	query_cinfo.contact_info.node_index = p_node_index;
 | |
| 	bool collided = solve_static(query_cinfo.shape_A, query_cinfo.transform_A, query_cinfo.shape_B, transform_B, soft_body_contact_callback, &query_cinfo.contact_info);
 | |
| 
 | |
| #ifdef DEBUG_ENABLED
 | |
| 	++query_cinfo.node_query_count;
 | |
| #endif
 | |
| 
 | |
| 	// Stop at first collision if contacts are not needed.
 | |
| 	return (collided && !query_cinfo.contact_info.result_callback);
 | |
| }
 | |
| 
 | |
| bool GodotCollisionSolver3D::soft_body_concave_callback(void *p_userdata, GodotShape3D *p_convex) {
 | |
| 	_SoftBodyQueryInfo &query_cinfo = *(static_cast<_SoftBodyQueryInfo *>(p_userdata));
 | |
| 
 | |
| 	query_cinfo.shape_A = p_convex;
 | |
| 
 | |
| 	// Calculate AABB for internal soft body query (in world space).
 | |
| 	AABB shape_aabb;
 | |
| 	for (int i = 0; i < 3; i++) {
 | |
| 		Vector3 axis;
 | |
| 		axis[i] = 1.0;
 | |
| 
 | |
| 		real_t smin, smax;
 | |
| 		p_convex->project_range(axis, query_cinfo.transform_A, smin, smax);
 | |
| 
 | |
| 		shape_aabb.position[i] = smin;
 | |
| 		shape_aabb.size[i] = smax - smin;
 | |
| 	}
 | |
| 
 | |
| 	shape_aabb.grow_by(query_cinfo.soft_body->get_collision_margin());
 | |
| 
 | |
| 	query_cinfo.soft_body->query_aabb(shape_aabb, soft_body_query_callback, &query_cinfo);
 | |
| 
 | |
| 	bool collided = (query_cinfo.contact_info.contact_count > 0);
 | |
| 
 | |
| #ifdef DEBUG_ENABLED
 | |
| 	++query_cinfo.convex_query_count;
 | |
| #endif
 | |
| 
 | |
| 	// Stop at first collision if contacts are not needed.
 | |
| 	return (collided && !query_cinfo.contact_info.result_callback);
 | |
| }
 | |
| 
 | |
| bool GodotCollisionSolver3D::solve_soft_body(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) {
 | |
| 	const GodotSoftBodyShape3D *soft_body_shape_B = static_cast<const GodotSoftBodyShape3D *>(p_shape_B);
 | |
| 
 | |
| 	GodotSoftBody3D *soft_body = soft_body_shape_B->get_soft_body();
 | |
| 	const Transform3D &world_to_local = soft_body->get_inv_transform();
 | |
| 
 | |
| 	const real_t collision_margin = soft_body->get_collision_margin();
 | |
| 
 | |
| 	GodotSphereShape3D sphere_shape;
 | |
| 	sphere_shape.set_data(collision_margin);
 | |
| 
 | |
| 	_SoftBodyQueryInfo query_cinfo;
 | |
| 	query_cinfo.contact_info.result_callback = p_result_callback;
 | |
| 	query_cinfo.contact_info.userdata = p_userdata;
 | |
| 	query_cinfo.contact_info.swap_result = p_swap_result;
 | |
| 	query_cinfo.soft_body = soft_body;
 | |
| 	query_cinfo.node_transform = p_transform_B * world_to_local;
 | |
| 	query_cinfo.shape_A = p_shape_A;
 | |
| 	query_cinfo.transform_A = p_transform_A;
 | |
| 	query_cinfo.shape_B = &sphere_shape;
 | |
| 
 | |
| 	if (p_shape_A->is_concave()) {
 | |
| 		// In case of concave shape, query convex shapes first.
 | |
| 		const GodotConcaveShape3D *concave_shape_A = static_cast<const GodotConcaveShape3D *>(p_shape_A);
 | |
| 
 | |
| 		AABB soft_body_aabb = soft_body->get_bounds();
 | |
| 		soft_body_aabb.grow_by(collision_margin);
 | |
| 
 | |
| 		// Calculate AABB for internal concave shape query (in local space).
 | |
| 		AABB local_aabb;
 | |
| 		for (int i = 0; i < 3; i++) {
 | |
| 			Vector3 axis(p_transform_A.basis.get_column(i));
 | |
| 			real_t axis_scale = 1.0 / axis.length();
 | |
| 
 | |
| 			real_t smin = soft_body_aabb.position[i];
 | |
| 			real_t smax = smin + soft_body_aabb.size[i];
 | |
| 
 | |
| 			smin *= axis_scale;
 | |
| 			smax *= axis_scale;
 | |
| 
 | |
| 			local_aabb.position[i] = smin;
 | |
| 			local_aabb.size[i] = smax - smin;
 | |
| 		}
 | |
| 
 | |
| 		concave_shape_A->cull(local_aabb, soft_body_concave_callback, &query_cinfo, true);
 | |
| 	} else {
 | |
| 		AABB shape_aabb = p_transform_A.xform(p_shape_A->get_aabb());
 | |
| 		shape_aabb.grow_by(collision_margin);
 | |
| 
 | |
| 		soft_body->query_aabb(shape_aabb, soft_body_query_callback, &query_cinfo);
 | |
| 	}
 | |
| 
 | |
| 	return (query_cinfo.contact_info.contact_count > 0);
 | |
| }
 | |
| 
 | |
| struct _ConcaveCollisionInfo {
 | |
| 	const Transform3D *transform_A = nullptr;
 | |
| 	const GodotShape3D *shape_A = nullptr;
 | |
| 	const Transform3D *transform_B = nullptr;
 | |
| 	GodotCollisionSolver3D::CallbackResult result_callback = nullptr;
 | |
| 	void *userdata = nullptr;
 | |
| 	bool swap_result = false;
 | |
| 	bool collided = false;
 | |
| 	int aabb_tests = 0;
 | |
| 	int collisions = 0;
 | |
| 	bool tested = false;
 | |
| 	real_t margin_A = 0.0f;
 | |
| 	real_t margin_B = 0.0f;
 | |
| 	Vector3 close_A;
 | |
| 	Vector3 close_B;
 | |
| };
 | |
| 
 | |
| bool GodotCollisionSolver3D::concave_callback(void *p_userdata, GodotShape3D *p_convex) {
 | |
| 	_ConcaveCollisionInfo &cinfo = *(static_cast<_ConcaveCollisionInfo *>(p_userdata));
 | |
| 	cinfo.aabb_tests++;
 | |
| 
 | |
| 	bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result, nullptr, cinfo.margin_A, cinfo.margin_B);
 | |
| 	if (!collided) {
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	cinfo.collided = true;
 | |
| 	cinfo.collisions++;
 | |
| 
 | |
| 	// Stop at first collision if contacts are not needed.
 | |
| 	return !cinfo.result_callback;
 | |
| }
 | |
| 
 | |
| bool GodotCollisionSolver3D::solve_concave(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin_A, real_t p_margin_B) {
 | |
| 	const GodotConcaveShape3D *concave_B = static_cast<const GodotConcaveShape3D *>(p_shape_B);
 | |
| 
 | |
| 	_ConcaveCollisionInfo cinfo;
 | |
| 	cinfo.transform_A = &p_transform_A;
 | |
| 	cinfo.shape_A = p_shape_A;
 | |
| 	cinfo.transform_B = &p_transform_B;
 | |
| 	cinfo.result_callback = p_result_callback;
 | |
| 	cinfo.userdata = p_userdata;
 | |
| 	cinfo.swap_result = p_swap_result;
 | |
| 	cinfo.collided = false;
 | |
| 	cinfo.collisions = 0;
 | |
| 	cinfo.margin_A = p_margin_A;
 | |
| 	cinfo.margin_B = p_margin_B;
 | |
| 
 | |
| 	cinfo.aabb_tests = 0;
 | |
| 
 | |
| 	Transform3D rel_transform = p_transform_A;
 | |
| 	rel_transform.origin -= p_transform_B.origin;
 | |
| 
 | |
| 	//quickly compute a local AABB
 | |
| 
 | |
| 	AABB local_aabb;
 | |
| 	for (int i = 0; i < 3; i++) {
 | |
| 		Vector3 axis(p_transform_B.basis.get_column(i));
 | |
| 		real_t axis_scale = 1.0 / axis.length();
 | |
| 		axis *= axis_scale;
 | |
| 
 | |
| 		real_t smin = 0.0, smax = 0.0;
 | |
| 		p_shape_A->project_range(axis, rel_transform, smin, smax);
 | |
| 		smin -= p_margin_A;
 | |
| 		smax += p_margin_A;
 | |
| 		smin *= axis_scale;
 | |
| 		smax *= axis_scale;
 | |
| 
 | |
| 		local_aabb.position[i] = smin;
 | |
| 		local_aabb.size[i] = smax - smin;
 | |
| 	}
 | |
| 
 | |
| 	concave_B->cull(local_aabb, concave_callback, &cinfo, false);
 | |
| 
 | |
| 	return cinfo.collided;
 | |
| }
 | |
| 
 | |
| bool GodotCollisionSolver3D::solve_static(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, Vector3 *r_sep_axis, real_t p_margin_A, real_t p_margin_B) {
 | |
| 	PhysicsServer3D::ShapeType type_A = p_shape_A->get_type();
 | |
| 	PhysicsServer3D::ShapeType type_B = p_shape_B->get_type();
 | |
| 	bool concave_A = p_shape_A->is_concave();
 | |
| 	bool concave_B = p_shape_B->is_concave();
 | |
| 
 | |
| 	bool swap = false;
 | |
| 
 | |
| 	if (type_A > type_B) {
 | |
| 		SWAP(type_A, type_B);
 | |
| 		SWAP(concave_A, concave_B);
 | |
| 		swap = true;
 | |
| 	}
 | |
| 
 | |
| 	if (type_A == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
 | |
| 		if (type_B == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
 | |
| 			WARN_PRINT_ONCE("Collisions between world boundaries are not supported.");
 | |
| 			return false;
 | |
| 		}
 | |
| 		if (type_B == PhysicsServer3D::SHAPE_SEPARATION_RAY) {
 | |
| 			WARN_PRINT_ONCE("Collisions between world boundaries and rays are not supported.");
 | |
| 			return false;
 | |
| 		}
 | |
| 		if (type_B == PhysicsServer3D::SHAPE_SOFT_BODY) {
 | |
| 			WARN_PRINT_ONCE("Collisions between world boundaries and soft bodies are not supported.");
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		if (swap) {
 | |
| 			return solve_static_world_boundary(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_A);
 | |
| 		} else {
 | |
| 			return solve_static_world_boundary(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_B);
 | |
| 		}
 | |
| 
 | |
| 	} else if (type_A == PhysicsServer3D::SHAPE_SEPARATION_RAY) {
 | |
| 		if (type_B == PhysicsServer3D::SHAPE_SEPARATION_RAY) {
 | |
| 			WARN_PRINT_ONCE("Collisions between rays are not supported.");
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		if (swap) {
 | |
| 			return solve_separation_ray(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_B);
 | |
| 		} else {
 | |
| 			return solve_separation_ray(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A);
 | |
| 		}
 | |
| 
 | |
| 	} else if (type_B == PhysicsServer3D::SHAPE_SOFT_BODY) {
 | |
| 		if (type_A == PhysicsServer3D::SHAPE_SOFT_BODY) {
 | |
| 			WARN_PRINT_ONCE("Collisions between soft bodies are not supported.");
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		if (swap) {
 | |
| 			return solve_soft_body(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true);
 | |
| 		} else {
 | |
| 			return solve_soft_body(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false);
 | |
| 		}
 | |
| 
 | |
| 	} else if (concave_B) {
 | |
| 		if (concave_A) {
 | |
| 			WARN_PRINT_ONCE("Collisions between two concave shapes are not supported.");
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		if (!swap) {
 | |
| 			return solve_concave(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A, p_margin_B);
 | |
| 		} else {
 | |
| 			return solve_concave(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_A, p_margin_B);
 | |
| 		}
 | |
| 
 | |
| 	} else {
 | |
| 		return collision_solver(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, r_sep_axis, p_margin_A, p_margin_B);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool GodotCollisionSolver3D::concave_distance_callback(void *p_userdata, GodotShape3D *p_convex) {
 | |
| 	_ConcaveCollisionInfo &cinfo = *(static_cast<_ConcaveCollisionInfo *>(p_userdata));
 | |
| 	cinfo.aabb_tests++;
 | |
| 
 | |
| 	Vector3 close_A, close_B;
 | |
| 	cinfo.collided = !gjk_epa_calculate_distance(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, close_A, close_B);
 | |
| 
 | |
| 	if (cinfo.collided) {
 | |
| 		// No need to process any more result.
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (!cinfo.tested || close_A.distance_squared_to(close_B) < cinfo.close_A.distance_squared_to(cinfo.close_B)) {
 | |
| 		cinfo.close_A = close_A;
 | |
| 		cinfo.close_B = close_B;
 | |
| 		cinfo.tested = true;
 | |
| 	}
 | |
| 
 | |
| 	cinfo.collisions++;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| bool GodotCollisionSolver3D::solve_distance_world_boundary(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B) {
 | |
| 	const GodotWorldBoundaryShape3D *world_boundary = static_cast<const GodotWorldBoundaryShape3D *>(p_shape_A);
 | |
| 	if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
 | |
| 		return false;
 | |
| 	}
 | |
| 	Plane p = p_transform_A.xform(world_boundary->get_plane());
 | |
| 
 | |
| 	static const int max_supports = 16;
 | |
| 	Vector3 supports[max_supports];
 | |
| 	int support_count;
 | |
| 	GodotShape3D::FeatureType support_type;
 | |
| 	Vector3 support_direction = p_transform_B.basis.xform_inv(-p.normal).normalized();
 | |
| 
 | |
| 	p_shape_B->get_supports(support_direction, max_supports, supports, support_count, support_type);
 | |
| 
 | |
| 	if (support_count == 0) { // This is a poor man's way to detect shapes that don't implement get_supports, such as GodotMotionShape3D.
 | |
| 		Vector3 support_B = p_transform_B.xform(p_shape_B->get_support(support_direction));
 | |
| 		r_point_A = p.project(support_B);
 | |
| 		r_point_B = support_B;
 | |
| 		bool collided = p.distance_to(support_B) <= 0;
 | |
| 		return collided;
 | |
| 	}
 | |
| 
 | |
| 	if (support_type == GodotShape3D::FEATURE_CIRCLE) {
 | |
| 		ERR_FAIL_COND_V(support_count != 3, false);
 | |
| 
 | |
| 		Vector3 circle_pos = supports[0];
 | |
| 		Vector3 circle_axis_1 = supports[1] - circle_pos;
 | |
| 		Vector3 circle_axis_2 = supports[2] - circle_pos;
 | |
| 
 | |
| 		// Use 3 equidistant points on the circle.
 | |
| 		for (int i = 0; i < 3; ++i) {
 | |
| 			Vector3 vertex_pos = circle_pos;
 | |
| 			vertex_pos += circle_axis_1 * Math::cos(2.0 * Math_PI * i / 3.0);
 | |
| 			vertex_pos += circle_axis_2 * Math::sin(2.0 * Math_PI * i / 3.0);
 | |
| 			supports[i] = vertex_pos;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bool collided = false;
 | |
| 	Vector3 closest;
 | |
| 	real_t closest_d = 0;
 | |
| 
 | |
| 	for (int i = 0; i < support_count; i++) {
 | |
| 		supports[i] = p_transform_B.xform(supports[i]);
 | |
| 		real_t d = p.distance_to(supports[i]);
 | |
| 		if (i == 0 || d < closest_d) {
 | |
| 			closest = supports[i];
 | |
| 			closest_d = d;
 | |
| 			if (d <= 0) {
 | |
| 				collided = true;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	r_point_A = p.project(closest);
 | |
| 	r_point_B = closest;
 | |
| 
 | |
| 	return collided;
 | |
| }
 | |
| 
 | |
| bool GodotCollisionSolver3D::solve_distance(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B, const AABB &p_concave_hint, Vector3 *r_sep_axis) {
 | |
| 	if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
 | |
| 		Vector3 a, b;
 | |
| 		bool col = solve_distance_world_boundary(p_shape_B, p_transform_B, p_shape_A, p_transform_A, a, b);
 | |
| 		r_point_A = b;
 | |
| 		r_point_B = a;
 | |
| 		return !col;
 | |
| 
 | |
| 	} else if (p_shape_B->is_concave()) {
 | |
| 		if (p_shape_A->is_concave()) {
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		const GodotConcaveShape3D *concave_B = static_cast<const GodotConcaveShape3D *>(p_shape_B);
 | |
| 
 | |
| 		_ConcaveCollisionInfo cinfo;
 | |
| 		cinfo.transform_A = &p_transform_A;
 | |
| 		cinfo.shape_A = p_shape_A;
 | |
| 		cinfo.transform_B = &p_transform_B;
 | |
| 		cinfo.result_callback = nullptr;
 | |
| 		cinfo.userdata = nullptr;
 | |
| 		cinfo.swap_result = false;
 | |
| 		cinfo.collided = false;
 | |
| 		cinfo.collisions = 0;
 | |
| 		cinfo.aabb_tests = 0;
 | |
| 		cinfo.tested = false;
 | |
| 
 | |
| 		Transform3D rel_transform = p_transform_A;
 | |
| 		rel_transform.origin -= p_transform_B.origin;
 | |
| 
 | |
| 		//quickly compute a local AABB
 | |
| 
 | |
| 		bool use_cc_hint = p_concave_hint != AABB();
 | |
| 		AABB cc_hint_aabb;
 | |
| 		if (use_cc_hint) {
 | |
| 			cc_hint_aabb = p_concave_hint;
 | |
| 			cc_hint_aabb.position -= p_transform_B.origin;
 | |
| 		}
 | |
| 
 | |
| 		AABB local_aabb;
 | |
| 		for (int i = 0; i < 3; i++) {
 | |
| 			Vector3 axis(p_transform_B.basis.get_column(i));
 | |
| 			real_t axis_scale = ((real_t)1.0) / axis.length();
 | |
| 			axis *= axis_scale;
 | |
| 
 | |
| 			real_t smin, smax;
 | |
| 
 | |
| 			if (use_cc_hint) {
 | |
| 				cc_hint_aabb.project_range_in_plane(Plane(axis), smin, smax);
 | |
| 			} else {
 | |
| 				p_shape_A->project_range(axis, rel_transform, smin, smax);
 | |
| 			}
 | |
| 
 | |
| 			smin *= axis_scale;
 | |
| 			smax *= axis_scale;
 | |
| 
 | |
| 			local_aabb.position[i] = smin;
 | |
| 			local_aabb.size[i] = smax - smin;
 | |
| 		}
 | |
| 
 | |
| 		concave_B->cull(local_aabb, concave_distance_callback, &cinfo, false);
 | |
| 		if (!cinfo.collided) {
 | |
| 			r_point_A = cinfo.close_A;
 | |
| 			r_point_B = cinfo.close_B;
 | |
| 		}
 | |
| 
 | |
| 		return !cinfo.collided;
 | |
| 	} else {
 | |
| 		return gjk_epa_calculate_distance(p_shape_A, p_transform_A, p_shape_B, p_transform_B, r_point_A, r_point_B); //should pass sepaxis..
 | |
| 	}
 | |
| }
 | 
